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ABSTRACT

AES (Rijndael) is considered the most prolific and widely used ([2]) encryption algorithm
and it has deep roots in Galois field theory. The mathematical operations that occur are
done in a special finite field — GF(2°) that is obtained by factorizing Z»[X] over the
polinomial 1 + X + X° + X' + X°. We have been wondering why that polynomial has been
chosen and if there are some hidden proprieties of that polynomial that other’s don’t
have. In this paper, we are going to look into the structure of GF(2°) and try to find some
answers regarding this choice made by the authors of AES.

1. INTRODUCTION

First we are going to present a short mathematical set of basic concepts; followed by the
inner workings of AES by pointing out its computations using the GF(2*) field. Finally
will look into other papers published by the authors of AES and see how they solved
another similar problem.

2. MATHEMATICAL PRELIMINARIES

2.1. Groups and Rings

Definition 2.1.1. A group (G, *) is defined by a set G and a binary operation * on the set,
that obeys the following proprieties:

o the binary operation * is closed on S (taking any two elements x, y from G and
applying the binary operation, the result is still an element from S)

o the binary operation * is associative (e. g. (x * y) * z = x * (y * 2))

e there exists an identity element in G (1) (e.g. 31eGs.t.1 xx = x x 1 =
xVxe@)

e cach element in G has an inverse (e.g. VxeGIx leGs.t. xxx"1 = x71x
x=1)

Definition 2.1.2. An abelian group (G, *) is a group where the binary operation is also
commutative.
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Definition 2.1.3. In a group (G, *), a subset S generates G if any element of G can be
expressed as a combination of elements of S using the binary operation *.

Definition 2.1.4. A group (G, *) is called cyclic if it can be generated by a single element,
which means that all the elements are actually “powers” of a single item o, called a
generator ([5]).

Definition 2.1.5. A ring (R, +, *) is defined by a set R and two binary operations (additive
and multiplicative), so that:

e (R, ) is an abelian group, with the identity element noted 0
e (R, *)is an monoid, with the identity element noted 1
o xx(y+z2)=xxy+xxzA(x+y)xz=x*xz2+y*zVXx Yy, zZ€R

Definition 2.1.5. A commutative ring is a ring in which the multiplicative operation is
commutative.

2.2. Fields

Definition 2.2.1. A field (K, +, *) respects the following proprieties:

o (K, +, *)is a commutative ring
o VxeK*=K\{0}3x leKs.t.xxx1=x1xx=1

Definition 2.2.2. A finite field is a field K with a finite number of elements. This number
is called the order of K and denoted by ord(K).

Theorem 2.2.3. If K is a finite field and ord(K) = q then ¢ = p™, where p is a prime
number and #n is a positive integer. Usually we shall work with field Z, = {0, 1} where
the addition is XOR, and the multiplication is defined xy = 1iffx =y = 1.

Definition 2.2.4. A polynomial ring K[X] in variable X over a field K is the set of
polynomials: P = ag + a; * X + a, * X?> + .. + a, * X"+ - (a; € K) having as
operations usual addition and multiplications with polynomials.

The degree (deg) of a polynomial represents the largest power of X for which the
coefficient a, is not null.

The fundamental result used here is the following: For every two polynomials P and Q,
with Q # 0, there are (unique) polynomials q (quotient) and r (remainder) so that:

e P=qg*xQ+r

o deg(r) <deg(Q)

Furthermore, we can define the greatest common divisor (gcd) and the least common
multiple (Icm) for polynomials. We can calculate them using — first - the Euclid’s
algorithm (for ged), then (for lcm) the relation

_ _PxQ
Iem(P,Q) = d P )

Definition 2.2.5. An irreducible polynomial is polynomial that cannot be written as a
product of nontrivial polynomials over the same field.
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Definition 2.2.6. A root of a polynomial P is an element r € K so that P(r) = 0, where
P(r)=ag+a;*r + @ .+ a, "

Definition 2.2.7. A minimal polynomial of a value a is the polynomial m of lowest degree
such that « is a root of m.

Definition 2.2.8. A primitive polynomial is a polynomial that generates all elements of an
extension field.

In order to construct an extension of a field K, we will need

e the polynomial ring K[X],
e an irreducible polynomial f.

Then quotient ring K/X}! /fis defined as follows:

K[X}/f={r| thereis P 1 K[X] so that P=q * f + r, deg(r) < deg(f)}.
We say that » = P (r equals P) modulo the irreductible polinomial f.
Therefore K[X]/f will contain all polynomials of degrees less than deg(f).

Theorem 2.2.9. Let Z,[X] be a ring of polynomials and f € Z,[X] an irreducible
polynomial. Then (Z,[X]/f, +, *) is a field, where the product is performed modulo the
polinomial f.

In particular, for p = 2 and for f € Z,[X] an irreducible polynomial of degree 8, we
define GF(28) = Z,[X]/f as the set of bytes having a field structure that depends on the
chosen polynomial f. We specify that the byte apa,a;...a; corresponds to the polynomial
Cl0+ a1X+ (,IZXZ + ...+ a7X7.

The field GF(2%)=Z,[X] / (1+X+X’+X'+X°) has 2* elements, and the polynomial / + X
(first row in Annex 2) can be chosen as generator for the multiplicative group (GF(2°)", *).

3. ADVANCED ENCRYPTION STANDARD

AES is a block cipher encryption symmetric algorithm with which one can partition the
data into blocks, encrypt it and then send it through an insecure channel. Being a
symmetric encryption algorithm, it uses the same encryption key for encrypting and
decrypting the data.

Encryption steps:

e Key-Expansion step: (the symmetric key is used to derive Round-Keys)
In the first round we execute AddRoundKey
The next (9, 11 or 13) rounds the following operations take place:
o SubBytes
o ShiftRows
o MixColumns
o AddRoundKey
In the final round, all operations will be performed except the last one:
o SubBytes
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o ShiftRows
o MixColumns

In the SubBytes step, a substitution box (S-box) is used in which each byte is swapped
with another one in a deterministic fashion, using a lookup table. This lookup table was
derived from the multiplicative inverse over GE(2%), followed by a affine transformation.
This is the only nonlinear step of the algorithm ([1]).

The MixColumns step ensures that if only one bit of the input text is modified, at least
half of the output bits would change ([4]).

Most of the operations of this algorithm take place in a finite field GF(2*) using the
irreducible polynomial 7 + X + X° + X’ + X*. All the irreducible polynomials of degree 8
over Z, are irreducible factors of X235 - 1 and it is because of that this factorization is
particularly interesting.

4. ABOUT IRREDUCIBLE FACTORS OF X255 — 1

There are 30 irreducible polynomials of degree 8 over Z, that can be found in Annex 1.
Each one of them could have been used for AES encryption system.

One possible reason for which the peculiar polynomial 1 + X + X + X* + X® has been
chosen is the fact that it has only five terms, and it is the first polynomial in
lexicographical order (among all irreducible polynomial of degree 8, this one has the
smallest exponents).

We can also note that for polynomial 1 + X + X* + X*+ X*, although irreducible, the
polynomial X is not a generator of GF(2®%) (=Z,[X] / (1 + X + X*+ X*+ X%)), its period
being 51.

One of AES’s inventors, Vincent Rijmen, along with Paulo Barreto, has proposed a hash
function WHIRLPOOL ([6]) which is based on AES.

This hash function uses the same Galois field GF(2®), but uses 1 + X* + X° + X*+ X* as
irreducible polynomial. It is specified by the authors that this polynomial was chosen
because it was the first polynomial listed in Table C from [3], and for which the primitive
polynomial X generates the whole GF(2°).

Another possible reason for choosing the first polynomial for Rijndael is for processing
speed for 8 and 32 bit processors. In the original specification of this algorithm, it is
asserted that the operations that take place in this field can be very efficient both for 8-bit
processors (smartcards) and for 32-bit processors (PCs) ([1]).

Moreover, the construction of S-boxes for AES was made in such a manner that the
polynomials are simple, but there also exists an algebraic complexity, when working in
GF@2)([1]).

Rijndael’s authors have initially considered that the S-box should be the mapping x => x™'
in GF(2%), but the algebraic complexity was weak and some attacks (e.g. interpolation
attack) can be performed. Because of that an affine transformation was added.
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4.1. The factorization of X255 — 1

For the factorization of X25° — 1, we consider GF(2*)=Z,[X] / (1 + X* + X> + X* + X%
using the first primitive polynomial listed in Annex 2.

Because 1 + X is a primitive polynomial, we can compute the factorization of X2°° — 1.
First of all, if o is a root of 1+X* + X° + X* + X® = 0, we shall compute the minimal
polynomials of each power of a:

Minimal polynomial Roots
1+ X2+ X3+ X* + X8 ol, o?, o, af, at®, a3?, aft, 28
1 + Xl + XZ + X4- + XS + X6 + XS a3’a6’a12‘a24—’a4—8,a96’a129‘a192
1+ X+ X+ X5+ X0+ X + X8 o8, al0, (20, o*0 (65 B0 (130 160
1+ X+ X5+ X° + X8 o, al®, (28 56, (112, o131 193 224
1 + XZ + X3 + X4 + XS + X7 + X8 0(9,0(18,0(33,0(36,0(66,0(72,0(132,0(144
1 + Xl + XZ + XS + X6 + X7 + XB 0(11,0122,0(44,0(88,0(97,0(133,0(176,0(194
1 + Xl + X3 + XS + X8 a13’a26’a52‘a67'a104’a134‘a161‘a208
1 + Xl + XZ + X4— + X6 + X7 + XS als’a30’a60’a120’a135'a195‘a225’(x240
1 + Xl + X4— (X17,(X34,(X68,(1136
1 + XZ + XS + XG + X8 a19'a38'a4—9‘a76‘a98’a137’a152’a196
1+ X'+ X3+ X’ + X° oL, %2, 15, BT, %, (138 162, (168
1 + X + X5 + X° + X° 23, %6, 092, @113, (139 o184 197 ;226
1 + Xl + X3 + X4— + X8 (XZS,(XSS,(XSO,(X70,(X100,(X140,(X145,(1200
1+ X+ X+ X+ X+ X5+ X8 027, 5%, 099, 108, 141 o177 198 ;216
1 + X2+ X°+ X’ + X8 029, 58 71, 116, 142 o163 209 232
1 + XZ + X3 + XS + X8 0(31,0(62,0(124,0(143,0(199,0(227,0(241,0(248
1+ X+ X+ X+ X+ X0+ X8 7, 'L a73, 7%, oB2, o146, o148 164
1+ X+ X+ X5+ X0+ X + X8 o3 o057, a8, 114, (147, o156 201 228
1 + X! + X°+ X + X8 o®3, 1B, 89 10T (149 172 (178 ;202
1+ X+ X+ X5+ X8 o®5, 75, a%0, (105, (150 o165 180 210
1+ X+ X+ X + X o7 q9% 121 o151 (188 (203 (1229 242
1 + Xl + XZ + X3 + X4 a51’a102’a153’a204—
1+ X+ X+ X + X8 B3, a77, o83, 106, (154 166 169 (212
1+ X+ X5+ X + X8 o5, @110 (115, 155 185 205 220 230
1+ X2+ X+ X6 + X8 59 103, (118 (157 179 206 217 ;236
1 + X'+ X2+ X3+ X° + X + X8 afL 79, o122, o158 (167 (211 (233 244
1+ X+ X+ X+ X0+ X + X8 b3, (126 159 (207 (231 (243 (249 252
1 + X'+ Xx? a®S, o170
1+ X+ X5+ X + X8 o8, %3, 117, o171, 174, (186 213, o234
1 + XZ + X4— + XS + X6 + X7 + X8 a91‘a107’a109‘a173’a181’a182’a214‘a218
1+ X+ X+ X+ X+ X+ X8 %5 125, 175, 190 215 235 245 (250
1 + Xl + X3 + X4- + XS + X6 + XS (Xlll,(X123,(X183,(X189,(X219,(X222,(XZS7,(X246
1 + X3 + x4 o119 o187 221 (238
1 + X*+ X5+ X° + X8 o127 o191 (223 (239 (247 (251 (1253 (254
1 + Xt o?>s

In order to compute the minimal polynomial m of a value o, we firstly compute its order &
i.e. for af we compute a2, o2”*, a2’ .., a2“*! = af (modulus .
i.e. for o pute a®*!, o, o o " = al (modulus 1+ X + X+ X'+ X°
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Because m(ai) =0 and because m = ag + a; * X + a,X> + ... + a X+ Xk, we will
solve the linear system Ax = B, where

1 o alk=Ds [ ko ] o
0 o k=D ket [ a ]

A= : : B =- | : | X = :
0 O(in—l O((k_l)*in—z [ak*in—ZJ [ak’_ZJ
0 o, , ale=vst okt Ap-1

These polynomials are all irreductible factors of X** - 1. To verify that we will compute
their least common multiple. Because gcd = 1 for any pair of polynomials, the lcm is
directly their product, that is 1 + X*>* (or X*** — 1 in the binary case).
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Annex 1. All irreducible polynomials of degree 8 over Z,:

1+ X2+ X3+ X"+ X8

+ X'+ X3+ X5+ X8

+ X'+ X2+ X3+ X*+ X5+ XB

+ X'+ X2+ X*+ X5+ X6+ X8

+ X'+ X2+ X+ X0+ X7+ X°

+ X2+ X'+ X3+ X0+ X7 + X8

+ X2+ X34+ X'+ X°+ X7+ X8

+ X3+ X5+ X7+ X®

+ X'+ X3+ X*+ x® (AES)

+ X2+ X3+ X°+ X°

+ X3+ X'+ X3+ X0+ X7 + X8

+ X*4+ X+ X7+ X8

+ X%+ X5+ X0+ X8

+ X2+ X3+ X'+ X0+ X7+ X®

[SRN) PN FURN) [ERNY PN FURN U UG N JURN) FERN Sy N

+ X3+ X5+ X0+ X°
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+ X1+ X2+ X3+ X0+ X7+ X8

+ X2+ X34+ X5+ X8

+ X34+ X4+ X5+ X8

+ X+ X5+ X°+ X8

+ X%+ X34+ X*+ X8

(WHIRLPOOL)

+ X'+ X34+ X7+ X°

+ X'+ X2+ X3+ X4+ X7+ X8

+ X'+ X5+ X7+ X8

+ X'+ X2+ X7+ X8

+ X'+ Xt + X5+ X0+ X7+ X8

+ X'+ X%+ X3+ X*4+ X6 4 X°

+ X'+ X5+ X0+ X8

+ X'+ X4+ X7+ X8

+ X'+ X%+ X5+ X0+ X7+ X8

RN U U U U U U] U\ RN U RN [N N SN SN

+ X'+ X34 X4+ X5+ X6 4 X8

These polynomials were found in an incremental manner, starting from irreducible
polynomials of degree less or equal to 2. The method used in finding the irreducible
polynomials was to generate the set of all polynomials of higher degree and then subtract
from that set the reducible ones. A reducible polynomial of degree n can be found by
taking two polynomials, one of degree p and one of degree ¢, wherep > 0, g > 0, p + g =
n, and multiplying them together.

Annex 2. All primitive polynomials which can generate GF2%=Z,[X]/ (1 + X + X*+ X*+ X%

The current number corresponds (in base 10) to the vector representation of the
polynomial associated on its right. For example, for 1 + X*+ X> the vector representation
is[0,1,1,1,0,0,0, 0], that is 1110 in binary and (1110), = (14),,.

3 1+ Xt 134 X'+ X2+ X7

5 1+ X? 135 1+ X+ X2+ X7
6 X'+ X2 136 X3+ X7

9 1+ X3 138 X'+ X3+ X7

11 1+ X'+ X3 142 X'+ X2+ X3+ X’
14 X+ X2+ X3 143 1+ X'+ X2+ X3+ X7
17 1+ X* 144 X*+ X7

18 Xt + x4 147 1+ X+ X*+ X7
19 1+ X'+ x* 149 14+ X2+ X4+ X7
20 X%+ x4 150 X1+ X2+ X+ X7
23 1+ X'+ X?+ x4 152 X3+ X4+ X7

24 X3+ x* 153 1+ X34+ X4+ X7
25 1+ X3+ x4 155 14+ X'+ X3+ X4+ X7
26 X'+ X3+ x* 157 1+ X2+ X3+ X4+ X7
28 X%+ X3+ x4 160 X5+ X7

30 X1+ X2+ X3+ x* 164 X?+ X°+ X7

31 1+ X'+ X2+ X3+ X* 165 1+ X2+ X5+ X7
33 1+ X5 166 X'+ X2+ X5+ X7
34 X'+ X5 167 14+ X'+ X2+ X5+ X7
35 1+ X'+ X° 169 1+ X3+ X5+ X7
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39 1+ X'+ X?+ X° 170 X'+ X3+ X5+ X7

40 X3+ X5 172 X2+ X3+ X5+ X7

42 X'+ X3+ X5 173 1+ X2+ X3+ X5+ X7

44 X%+ X3+ X5 178 X'+ X4+ X5+ X7

48 X4+ X5 180 X2+ X*+ X5+ X7

49 1+ X*+ X° 183 1+ X'+ X2+ X4+ X5+ X7
60 X2+ X34+ X4+ X° 184 X3+ X4+ X5+ X7

62 X'+ X%+ X34+ X*+ X5 185 1+ X3+ X4+ X3+ X7

63 1+ X'+ X2+ X3+ X*+ X5 | 186 X'+ X3+ X4+ X5+ X7

65 1+ X° 190 X'+ X2+ X3+ X4+ X5+ X7
69 1+ X%+ Xx° 191 1+ X'+ X2+ X3+ X4+ X5+ X7
70 X'+ X%+ X© 192 X6+ X7

71 1+ X'+ X?+ X° 193 1+ X6+ X7

72 X3 + X° 196 X%+ X+ X7

73 1+ X3+ X° 200 X3+ X6+ X7

75 1+ X'+ X3+ X° 201 1+ X3+ X6+ X7

76 X%+ X3+ X° 206 X'+ X2+ X3+ X0+ X7

78 X'+ X2+ X3+ X© 207 1+ X'+ X2+ X34+ X0+ X7
79 1+ X'+ X2+ X3+ X© 208 X*+ X6+ X7

82 X'+ X*+ X© 214 X'+ X2+ X*+ X0+ X7

84 X%+ X*+ X° 215 1+ X'+ X2+ X4+ X6+ X7
86 X'+ X%+ X*+ X° 218 X'+ X3+ X4+ X0+ X7

87 1+ X'+ X2+ X*+ X6 220 X2+ X34+ X4+ X0+ X7

88 X3+ X*+ X° 221 1+ X2+ X3+ X*+ X0+ X7
89 1+ X3+ X*+ X° 222 X'+ X2+ X3+ X4+ X6+ X7
90 X'+ X3+ X*+ X6 226 X'+ X5+ X+ X7

91 1+ X1+ X3+ X*+ X© 227 14+ X'+ X5+ X6+ X7

95 14+ X'+ X2+ X3+ X*+ X6 | 229 1+ X2+ X5+ X0+ X7

100 X%+ X5+ X° 230 X'+ X2+ X5+ X0+ X7

101 1+ X2+ X°+ X° 231 1+ X'+ X2+ X5+ X°+ X7
104 X3+ X°+ X° 233 1+ X34+ X5+ X6+ X7

105 1+ X3+ X5+ X° 234 X1+ X3+ X°+ X+ X7

109 1+ X2+ X3+ X5+ X© 235 1+ X'+ X3+ X5+ X0+ X7
110 X'+ X%+ X3+ X5+ Xx° 238 X'+ X2+ X3+ X5+ X0+ X7
112 X*+ X5+ X° 240 X4+ X5+ X6+ X7

113 1+ X*+ X5+ X6 241 1+ X4+ X5+ X6+ X7

118 X'+ X%+ X4+ X5+ Xx° 244 X2+ X*+ X5+ X0+ X7

119 | 1+ X'+ X2+ X*+ X5+ X® | 245 1+ X2+ X*+ X5+ X0+ X7
121 1+ X34+ X*+ X5+ X© 246 X'+ X2+ X4+ X5+ Xo+ X7
122 X'+ X3+ X*+ X5+ X6 248 X34+ X4+ X5+ X0+ X7

123 1+ X'+ X34+ X*+ X°+ X° | 251 1+ X'+ X34+ X4+ X5+ X6+ X7
126 | X'+ X2+ X3+ X*+ X5+ X° | 253 1+ X2+ X34+ X'+ X°+ X+ X7
129 1+ X7 254 X'+ X2+ X3+ X*+ X5+ X+ X7
132 X%+ X7 255 |1+ X'+ X2+ X3+ X4+ X2+ XO+ X7

We remark that 50% from elements of GF(2%) (128 from 256) are primitive and can

generate the whole field.
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