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ABSTRACT 

AES (Rijndael) is considered the most prolific and widely used ([2]) encryption algorithm 
and it has deep roots in Galois field theory. The mathematical operations that occur are 
done in a special finite field – GF(28) that is obtained by factorizing Z2[X] over the 
polinomial 1 + X + X3 + X4 + X8. We have been wondering why that polynomial has been 
chosen and if there are some hidden proprieties of that polynomial that other’s don’t 
have. In this paper, we are going to look into the structure of GF(28) and try to find some 
answers regarding this choice made by the authors of AES. 

 
1. INTRODUCTION 

First we are going to present a short mathematical set of basic concepts; followed by the 
inner workings of AES by pointing out its computations using the GF(28) field. Finally 
will look into other papers published by the authors of AES and see how they solved 
another similar problem. 

2. MATHEMATICAL PRELIMINARIES 

2.1. Groups and Rings 

Definition 2.1.1. A group (G, *) is defined by a set G and a binary operation * on the set, 
that obeys the following proprieties: 

• the binary operation * is closed on S (taking any two elements x, y from G and 
applying the binary operation, the result is still an element from S) 

• the binary operation * is associative (e. g.  ሺכ ݔ ሻݕ  כ  ൌ ݖ  כ ݔ    ሺכ ݕ  (ሻݖ 
• there exists an identity element in G (1) (e.g. ׌ ૚ Ԗ ݏ ܩ. .ݐ ૚ כ ൌ ݔ  כ ݔ   ૚ ൌ ݔ ׊ ݔ Ԗ ܩ) 
• each element in G has an inverse (e.g. ݔ ׊ Ԗ ିݔ ׌ ܩଵ Ԗ ݏ ܩ. ݔ  .ݐ כ ଵିݔ ൌ ଵିݔ  ݔכ ൌ ૚) 

Definition 2.1.2. An abelian group (G, *) is a group where the binary operation is also 
commutative. 
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Definition 2.1.3. In a group (G, *), a subset S generates G if any element of G can be 
expressed as a combination of elements of S using the binary operation *. 

Definition 2.1.4. A group (G, *) is called cyclic if it can be generated by a single element, 
which means that all the elements are actually “powers” of a single item α, called a 
generator ([5]). 

Definition 2.1.5. A ring (R, +, *) is defined by a set R and two binary operations (additive 
and multiplicative), so that: 

• (R, +) is an abelian group, with the identity element noted 0 
• (R, *) is an monoid, with the identity element noted 1 
ݔ • כ ሺݕ ൅ ሻݖ ൌ ݔ כ ݕ ൅ ݔ כ ר ݖ ሺݔ ൅ ሻݕ כ ݖ ൌ ݔ כ ݖ ൅ ݕ כ ,ݔ ׊ ݖ ,ݕ   ܴ ߳ ݖ

Definition 2.1.5. A commutative ring is a ring in which the multiplicative operation is 
commutative. 

2.2 . Fields 

Definition 2.2.1. A field (K, +, *) respects the following proprieties: 

• (K, +, *) is a commutative ring 
כܭ߳ݔ׊ • ൌ .ݏ ܭ ߳ ଵିݔ׌ ሼ૙ሽ\ܭ ݔ  .ݐ כ ଵିݔ ൌ ଵିݔ  כ ݔ ൌ ૚ 

Definition 2.2.2. A finite field is a field K with a finite number of elements. This number 
is called the order of K and denoted by ord(K). 

Theorem 2.2.3. If K is a finite field and ݀ݎ݋ሺܭሻ  ൌ ൌ ݍ then ݍ   ௡, where p is a prime݌ 
number and n is a positive integer. Usually we shall work with field ܼଶ ൌ ሼ૙, ૚ሽ where 
the addition is XOR, and the multiplication is defined ݕݔ ൌ ૚ iff ݔ ൌ ݕ ൌ ૚. 
Definition 2.2.4. A polynomial ring K[X] in variable X over a field K is the set of 
polynomials: P ൌ  ܽ଴  ൅  ܽଵ כ   ܺ ൅  ܽଶ כ   ܺଶ  ൅  … ൅  ܽ௡ כ   ܺ௡ ൅  ሻ having asܭ ߳ ሺܽ௜ ڮ
operations usual addition and multiplications with polynomials. 

The degree (deg) of a polynomial represents the largest power of X for which the 
coefficient an is not null. 

The fundamental result used here is the following: For every two polynomials P and Q, 
with Q ≠ 0, there are (unique) polynomials q (quotient) and r (remainder) so that: 

• ܲ ൌ ݍ כ ܳ ൅  ݎ
• ݀݁݃ሺݎሻ ൏ ݀݁݃ሺܳሻ 

Furthermore, we can define the greatest common divisor (݃ܿ݀) and the least common 
multiple (݈ܿ݉) for polynomials. We can calculate them using – first - the Euclid’s 
algorithm (for gcd), then (for lcm) the relation  ݈ܿ݉ሺܲ, ܳሻ ൌ  ௉ כ ொ୥ୡୢ ሺ௉,   ொሻ . 
Definition 2.2.5. An irreducible polynomial is polynomial that cannot be written as a 
product of nontrivial polynomials over the same field.  
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Definition 2.2.6. A root of a polynomial P is an element ݎ א  so that P(r) = 0, where ܭ
P(r) = a0 + a1*r + a2*r2 +…+ an*rn . 

Definition 2.2.7. A minimal polynomial of a value α is the polynomial m of lowest degree 
such that α is a root of m. 

Definition 2.2.8. A primitive polynomial is a polynomial that generates all elements of an 
extension field. 

In order to construct an extension of a field ܭ, we will need  

• the polynomial ring K[X], 
• an irreducible polynomial ݂. 

Then quotient ring K[X} / f is defined as follows: 

K[X} / f = {r | there is P ϵ K[X] so that P=q * f + r, deg(r) < deg(f)}. 

We say that r = P (r equals P) modulo the irreductible polinomial f.  

Therefore ܭሾܺሿ ݂⁄  will contain all polynomials of degrees less than deg(݂). 

Theorem 2.2.9. Let ܼ௣ሾܺሿ be a ring of polynomials and ݂ א  ܼ௣ሾܺሿ an irreducible 
polynomial. Then (ܼ௣ሾܺሿ ݂⁄ , +, *) is a field, where the product is performed modulo the 
polinomial f. 

In particular, for ݌ ൌ 2 and for ݂ א ܼଶሾܺሿ an irreducible polynomial of degree 8, we 
define ܨܩሺ2଼ሻ ൌ ܼଶሾܺሿ ݂⁄  as the set of bytes having a field structure that depends on the 
chosen polynomial ݂. We specify that the byte a0a1a2…a7 corresponds to the polynomial 
a0 + a1X + a2X2 + … + a7X7. 

The field GF(28)=Z2[X] / (1+X+X3+X4+X8) has 28 elements, and the polynomial 1 + X 
(first row in Annex 2) can be chosen as generator for the multiplicative group (GF(28)*,*). 

3. ADVANCED ENCRYPTION STANDARD 

AES is a block cipher encryption symmetric algorithm with which one can partition the 
data into blocks, encrypt it and then send it through an insecure channel. Being a 
symmetric encryption algorithm, it uses the same encryption key for encrypting and 
decrypting the data. 

Encryption steps: 

• Key-Expansion step: (the symmetric key is used to derive Round-Keys) 
• In the first round we execute AddRoundKey 
• The next (9, 11 or 13) rounds the following operations take place: 

o SubBytes 
o ShiftRows 
o MixColumns 
o AddRoundKey 

• In the final round, all operations will be performed except the last one: 
o SubBytes 
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o ShiftRows 
o MixColumns 

In the SubBytes step, a substitution box (S-box) is used in which each byte is swapped 
with another one in a deterministic fashion, using a lookup table. This lookup table was 
derived from the multiplicative inverse over GF(28), followed by a affine transformation. 
This is the only nonlinear step of the algorithm ([1]).  

The MixColumns step ensures that if only one bit of the input text is modified, at least 
half of the output bits would change ([4]). 

Most of the operations of this algorithm take place in a finite field GF(28) using the 
irreducible polynomial 1 + X + X3 + X4 + X8. All the irreducible polynomials of degree 8 
over Z2 are irreducible factors of ܺଶହହ –  1 and it is because of that this factorization is 
particularly interesting. 

4. ABOUT IRREDUCIBLE FACTORS OF ࢄ૛૞૞ െ ૚ 

There are 30 irreducible polynomials of degree 8 over Z2 that can be found in Annex 1. 
Each one of them could have been used for AES encryption system. 

One possible reason for which the peculiar polynomial 1 + X + X3 + X4 + X8 has been 
chosen is the fact that it has only five terms, and it is the first polynomial in 
lexicographical order (among all irreducible polynomial of degree 8, this one has the 
smallest exponents). 

We can also note that for polynomial 1 + X + X3 + X4 + X8, although irreducible, the 
polynomial ܺ is not a generator of GF(28) (=Z2[X] / (1 + X + X3 + X4 + X8)), its period 
being 51. 

One of AES’s inventors, Vincent Rijmen, along with Paulo Barreto, has proposed a hash 
function WHIRLPOOL ([6]) which is based on AES. 

This hash function uses the same Galois field GF(28), but uses 1 + X2 + X3 + X4 + X8 as 
irreducible polynomial. It is specified by the authors that this polynomial was chosen 
because it was the first polynomial listed in Table C from [3], and for which the primitive 
polynomial ܺ generates the whole GF(28). 

Another possible reason for choosing the first polynomial for Rijndael is for processing 
speed for 8 and 32 bit processors. In the original specification of this algorithm, it is 
asserted that the operations that take place in this field can be very efficient both for 8-bit 
processors (smartcards) and for 32-bit processors (PCs) ([1]). 

Moreover, the construction of S-boxes for AES was made in such a manner that the 
polynomials are simple, but there also exists an algebraic complexity, when working in 
GF(28)([1]). 

Rijndael’s authors have initially considered that the S-box should be the mapping x => x-1 
in GF(28), but the algebraic complexity was weak and some attacks (e.g. interpolation 
attack) can be performed. Because of that an affine transformation was added. 
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4.1. The factorization of ࢄ૛૞૞ െ ૚ 

For the factorization of ܺଶହହ  െ 1, we consider GF(28)=Z2[X] / (1 + X2 + X3 + X4 + X8) 
using the first primitive polynomial listed in Annex 2. 

Because 1 ൅  ܺ is a primitive polynomial, we can compute the factorization of ܺଶହହ  െ 1. 
First of all, if α is a root of  1+X2 + X3 + X4 + X8 = 0, we shall compute the minimal 
polynomials of each power of α: 

Minimal polynomial Roots 1  ൅   Xଶ  ൅   Xଷ  ൅  Xସ  ൅   X଼ αଵ, αଶ, αସ, α଼, αଵ଺, αଷଶ, α଺ସ, αଵଶ଼ 1  ൅  Xଵ  ൅   Xଶ  ൅  Xସ  ൅   Xହ  ൅   X଺  ൅  X଼ αଷ, α଺, αଵଶ, αଶସ, αସ଼, αଽ଺, αଵଶଽ, αଵଽଶ 1  ൅  Xଵ  ൅   Xସ  ൅  Xହ  ൅   X଺  ൅   X଻  ൅  X଼ αହ, αଵ଴, αଶ଴, αସ଴, α଺ହ, α଼଴, αଵଷ଴, αଵ଺଴ 1  ൅   Xଷ  ൅   Xହ  ൅  X଺  ൅   X଼ α଻, αଵସ, αଶ଼, αହ଺, αଵଵଶ, αଵଷଵ, αଵଽଷ, αଶଶସ 1  ൅   Xଶ  ൅   Xଷ  ൅   Xସ  ൅  Xହ  ൅   X଻  ൅   X଼ αଽ, αଵ଼, αଷଷ, αଷ଺, α଺଺, α଻ଶ, αଵଷଶ, αଵସସ 1  ൅  Xଵ  ൅   Xଶ  ൅  Xହ  ൅   X଺  ൅   X଻  ൅  X଼ αଵଵ, αଶଶ, αସସ, α଼଼, αଽ଻, αଵଷଷ, αଵ଻଺, αଵଽସ 1  ൅   Xଵ  ൅  Xଷ  ൅   Xହ  ൅   X଼ αଵଷ, αଶ଺, αହଶ, α଺଻, αଵ଴ସ, αଵଷସ, αଵ଺ଵ, αଶ଴଼ 1  ൅  Xଵ  ൅   Xଶ  ൅  Xସ  ൅   X଺  ൅   X଻  ൅  X଼ αଵହ, αଷ଴, α଺଴, αଵଶ଴, αଵଷହ, αଵଽହ, αଶଶହ, αଶସ଴ 1  ൅   Xଵ  ൅   Xସ αଵ଻, αଷସ, α଺଼, αଵଷ଺ 1  ൅   Xଶ  ൅   Xହ  ൅  X଺  ൅   X଼ αଵଽ, αଷ଼, αସଽ, α଻଺, αଽ଼, αଵଷ଻, αଵହଶ, αଵଽ଺ 1  ൅   Xଵ  ൅  Xଷ  ൅   X଻  ൅   X଼ αଶଵ, αସଶ, α଺ଽ, α଼ଵ, α଼ସ, αଵଷ଼, αଵ଺ଶ, αଵ଺଼ 1  ൅   Xଵ  ൅  Xହ  ൅   X଺  ൅   X଼ αଶଷ, αସ଺, αଽଶ, αଵଵଷ, αଵଷଽ, αଵ଼ସ, αଵଽ଻, αଶଶ଺ 1  ൅   Xଵ  ൅  Xଷ  ൅   Xସ  ൅   X଼ αଶହ, αଷହ, αହ଴, α଻଴, αଵ଴଴, αଵସ଴, αଵସହ, αଶ଴଴ 1  ൅  Xଵ  ൅   Xଶ  ൅  Xଷ  ൅   Xସ  ൅   Xହ  ൅  X଼ αଶ଻, αହସ, αଽଽ, αଵ଴଼, αଵସଵ, αଵ଻଻, αଵଽ଼, αଶଵ଺ 1  ൅   Xଶ  ൅   Xଷ  ൅  X଻  ൅   X଼ αଶଽ, αହ଼, α଻ଵ, αଵଵ଺, αଵସଶ, αଵ଺ଷ, αଶ଴ଽ, αଶଷଶ 1  ൅   Xଶ  ൅   Xଷ  ൅  Xହ  ൅   X଼ αଷଵ, α଺ଶ, αଵଶସ, αଵସଷ, αଵଽଽ, αଶଶ଻, αଶସଵ, αଶସ଼ 1  ൅  Xଵ  ൅   Xଶ  ൅  Xଷ  ൅   Xସ  ൅   X଺  ൅  X଼ αଷ଻, αସଵ, α଻ଷ, α଻ସ, α଼ଶ, αଵସ଺, αଵସ଼, αଵ଺ସ 1  ൅   Xଷ  ൅   Xସ  ൅   Xହ  ൅  X଺  ൅   X଻  ൅   X଼ αଷଽ, αହ଻, α଻଼, αଵଵସ, αଵସ଻, αଵହ଺, αଶ଴ଵ, αଶଶ଼  1  ൅   Xଵ  ൅   X଺  ൅   X଻  ൅  X଼ αସଷ, α଼଺, α଼ଽ, αଵ଴ଵ, αଵସଽ, αଵ଻ଶ, αଵ଻଼, αଶ଴ଶ 1  ൅   Xଷ  ൅   Xସ  ൅  Xହ  ൅   X଼ αସହ, α଻ହ, αଽ଴, αଵ଴ହ, αଵହ଴, αଵ଺ହ, αଵ଼଴, αଶଵ଴ 1  ൅   Xଷ  ൅   Xହ  ൅  X଻  ൅   X଼ αସ଻, αଽସ, αଵଶଵ, αଵହଵ, αଵ଼଼, αଶ଴ଷ, αଶଶଽ, αଶସଶ 1  ൅   Xଵ  ൅  Xଶ  ൅   Xଷ  ൅   Xସ αହଵ, αଵ଴ଶ, αଵହଷ, αଶ଴ସ 1  ൅   Xଵ  ൅  Xଶ  ൅   X଻  ൅   X଼ αହଷ, α଻଻, α଼ଷ, αଵ଴଺, αଵହସ, αଵ଺଺, αଵ଺ଽ, αଶଵଶ 1  ൅   Xସ  ൅   Xହ  ൅  X଻  ൅   X଼ αହହ, αଵଵ଴, αଵଵହ, αଵହହ, αଵ଼ହ, αଶ଴ହ, αଶଶ଴, αଶଷ଴ 1  ൅   Xଶ  ൅   Xଷ  ൅  X଺  ൅   X଼ αହଽ, αଵ଴ଷ, αଵଵ଼, αଵହ଻, αଵ଻ଽ, αଶ଴଺, αଶଵ଻, αଶଷ଺ 1  ൅  Xଵ  ൅   Xଶ  ൅  Xଷ  ൅   X଺  ൅   X଻  ൅  X଼ α଺ଵ, α଻ଽ, αଵଶଶ, αଵହ଼, αଵ଺଻, αଶଵଵ, αଶଷଷ, αଶସସ 1  ൅   Xଶ  ൅   Xଷ  ൅   Xସ  ൅  X଺  ൅   X଻  ൅   X଼ α଺ଷ, αଵଶ଺, αଵହଽ, αଶ଴଻, αଶଷଵ, αଶସଷ, αଶସଽ, αଶହଶ 1  ൅   Xଵ  ൅   Xଶ α଼ହ, αଵ଻଴ 1  ൅   Xଵ  ൅  Xହ  ൅   X଻  ൅   X଼ α଼଻, αଽଷ, αଵଵ଻, αଵ଻ଵ, αଵ଻ସ, αଵ଼଺, αଶଵଷ, αଶଷସ 1  ൅   Xଶ  ൅   Xସ  ൅   Xହ  ൅  X଺  ൅   X଻  ൅   X଼ αଽଵ, αଵ଴଻, αଵ଴ଽ, αଵ଻ଷ, αଵ଼ଵ, αଵ଼ଶ, αଶଵସ, αଶଵ଼ 1  ൅  Xଵ  ൅   Xଶ  ൅  Xଷ  ൅   Xସ  ൅   X଻  ൅  X଼ αଽହ, αଵଶହ, αଵ଻ହ, αଵଽ଴, αଶଵହ, αଶଷହ, αଶସହ, αଶହ଴  1  ൅   Xଵ  ൅   Xଷ  ൅   Xସ  ൅   Xହ  ൅  X଺  ൅   X଼ αଵଵଵ, αଵଶଷ, αଵ଼ଷ, αଵ଼ଽ, αଶଵଽ, αଶଶଶ, αଶଷ଻, αଶସ଺ 1  ൅   Xଷ  ൅  Xସ αଵଵଽ, αଵ଼଻, αଶଶଵ, αଶଷ଼ 1  ൅   Xସ  ൅   Xହ  ൅  X଺  ൅   X଼ αଵଶ଻, αଵଽଵ, αଶଶଷ, αଶଷଽ, αଶସ଻, αଶହଵ, αଶହଷ, αଶହସ 1  ൅   Xଵ αଶହହ 

In order to compute the minimal polynomial ݉ of a value α, we firstly compute its order k 
(i.e. for α௜ we compute αଶכ௜, αଶమכ௜, αଶయכ௜ … , αଶೖכ௜ ൌ α௜ (modulus 1 + X2 + X3 + X4 + X8). 
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Because ݉൫α௜൯ ൌ 0 and because m = a0 + a1 * X + a2X2 + … + ak-1Xk-1 + Xk, we will 
solve the linear system ݔܣ ൌ  where ,ܤ 

ܣ ൌ ێێۏ 
ۍێێ 1 α௜଴0 α௜ଵ ڮ αሺ௞ିଵሻכ௜଴αሺ௞ିଵሻכ௜ଵڭ ڰ 00ڭ α௜௡ିଵα௜௡ିଶ ڮ αሺ௞ିଵሻכ௜௡ିଶαሺ௞ିଵሻכ௜௡ିଵۑۑے

ېۑۑ ܤ  ൌ െ ێێێۏ
ۍێ α௞כ௜଴α௞כ௜ଵڭα௞כ௜௡ିଶα௞כ௜௡ିଵۑۑۑے

ېۑ ݔ  ൌ ێێێۏ
ۍ ܽ଴ܽଵܽڭ௞ିଶܽ௞ିଵۑۑۑے

  ې
These polynomials are all irreductible factors of X255 - 1. To verify that we will compute 
their least common multiple. Because gcd = 1 for any pair of polynomials, the ݈ܿ݉ is 
directly their product, that is 1 + X255 (or X255 – 1 in the binary case). 
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Annex 1. All irreducible polynomials of degree 8 over Z2: 1 ൅  Xଶ ൅  Xଷ ൅ X଻ ൅  X଼ 1 ൅  Xଵ ൅ Xଷ ൅  Xହ ൅ X଼ 1 ൅  ܺଵ ൅ ܺଶ ൅ ܺଷ ൅  ܺସ ൅ ܺହ ൅ ଼ܺ 1 ൅  ܺଵ ൅ ܺଶ ൅ ܺସ ൅  ܺହ ൅ ܺ଺ ൅ ଼ܺ 1 ൅  ܺଵ ൅ ܺଶ ൅ ܺସ ൅  ܺ଺ ൅ ܺ଻ ൅ ଼ܺ 1 ൅  ܺଶ ൅ ܺସ ൅  ܺହ ൅ ܺ଺ ൅ ܺ଻ ൅  ଼ܺ 1 ൅  Xଶ ൅  Xଷ ൅ Xସ ൅  Xହ ൅ X଻ ൅  X଼ 1 ൅  ܺଷ ൅ ܺହ ൅  ܺ଻ ൅ ଼ܺ 1 ൅  ܺଵ ൅ ܺଷ ൅ ܺସ ൅  ଼ܺ                                           (AES) 1 ൅  ܺଶ ൅ ܺଷ ൅  ܺ଺ ൅ ଼ܺ 1 ൅  ܺଷ ൅ ܺସ ൅  ܺହ ൅ ܺ଺ ൅ ܺ଻ ൅  ଼ܺ 1 ൅  ܺସ ൅ ܺହ ൅  ܺ଻ ൅ ଼ܺ 1 ൅  ܺଶ ൅ ܺହ ൅  ܺ଺ ൅ ଼ܺ 1 ൅  ܺଶ ൅ ܺଷ ൅  ܺସ ൅ ܺ଺ ൅ ܺ଻ ൅  ଼ܺ 1 ൅  ܺଷ ൅ ܺହ ൅  ܺ଺ ൅ ଼ܺ 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT 

 
263 

 

1 ൅  ܺଵ ൅ ܺଶ ൅ ܺଷ ൅  ܺ଺ ൅ ܺ଻ ൅ ଼ܺ 1 ൅  ܺଶ ൅ ܺଷ ൅  ܺହ ൅ ଼ܺ 1 ൅  ܺଷ ൅ ܺସ ൅  ܺହ ൅ ଼ܺ 1 ൅  ܺସ ൅ ܺହ ൅  ܺ଺ ൅ ଼ܺ 1 ൅  ܺଶ ൅ ܺଷ ൅  ܺସ ൅ ଼ܺ                           (WHIRLPOOL) 1 ൅  ܺଵ ൅ ܺଷ ൅ ܺ଻ ൅  ଼ܺ 1 ൅  ܺଵ ൅ ܺଶ ൅ ܺଷ ൅  ܺସ ൅ ܺ଻ ൅ ଼ܺ 1 ൅  ܺଵ ൅ ܺହ ൅ ܺ଻ ൅  ଼ܺ 1 ൅  ܺଵ ൅ ܺଶ ൅ ܺ଻ ൅  ଼ܺ 1 ൅  ܺଵ ൅ ܺସ ൅ ܺହ ൅  ܺ଺ ൅ ܺ଻ ൅ ଼ܺ 1 ൅  ܺଵ ൅ ܺଶ ൅ ܺଷ ൅  ܺସ ൅ ܺ଺ ൅ ଼ܺ 1 ൅  ܺଵ ൅ ܺହ ൅ ܺ଺ ൅  ଼ܺ 1 ൅  ܺଵ ൅ ܺ଺ ൅ ܺ଻ ൅  ଼ܺ 1 ൅  ܺଵ ൅ ܺଶ ൅ ܺହ ൅  ܺ଺ ൅ ܺ଻ ൅ ଼ܺ 1 ൅  ܺଵ ൅ ܺଷ ൅ ܺସ ൅  ܺହ ൅ ܺ଺ ൅ ଼ܺ 

These polynomials were found in an incremental manner, starting from irreducible 
polynomials of degree less or equal to 2. The method used in finding the irreducible 
polynomials was to generate the set of all polynomials of higher degree and then subtract 
from that set the reducible ones. A reducible polynomial of degree n can be found by 
taking two polynomials, one of degree p and one of degree q, where p > 0, q > 0, p + q = 
n, and multiplying them together. 

Annex 2. All primitive polynomials which can generate GF(28)=Z2[X] / (1 + X + X3 + X4 + X8)  

The current number corresponds (in base 10) to the vector representation of the 
polynomial associated on its right. For example, for 1 + X2 + X3  the vector representation 
is [0, 1, 1, 1, 0, 0, 0, 0], that is 1110 in binary and (1110)2 = (14)10. 

3 1 ൅  ܺଵ 134 ܺଵ ൅ ܺଶ ൅  ܺ଻ 
5 1 ൅  ܺଶ 135 1 ൅  ܺଵ ൅ ܺଶ ൅  ܺ଻ 
6 ܺଵ ൅ ܺଶ 136 ܺଷ ൅  ܺ଻ 
9 1 ൅  ܺଷ 138 ܺଵ ൅ ܺଷ ൅  ܺ଻ 
11 1 ൅  ܺଵ ൅ ܺଷ 142 ܺଵ ൅  ܺଶ ൅ ܺଷ ൅ ܺ଻ 
14 ܺଵ ൅  ܺଶ ൅ ܺଷ 143 1 ൅ ܺଵ ൅  ܺଶ ൅ ܺଷ ൅ ܺ଻ 
17 1 ൅  ܺସ 144 ܺସ ൅  ܺ଻ 
18 ܺଵ ൅ ܺସ 147 1 ൅  ܺଵ ൅ ܺସ ൅  ܺ଻ 
19 1 ൅  ܺଵ ൅ ܺସ 149 1 ൅  ܺଶ ൅ ܺସ ൅ ܺ଻ 
20 ܺଶ ൅ ܺସ 150 ܺଵ ൅  ܺଶ ൅ ܺସ ൅ ܺ଻ 
23 1 ൅ ܺଵ ൅  ܺଶ ൅ ܺସ 152 ܺଷ ൅ ܺସ ൅ ܺ଻ 
24 ܺଷ ൅ ܺସ 153 1 ൅  ܺଷ ൅ ܺସ ൅ ܺ଻ 
25 1 ൅ ܺଷ ൅ ܺସ 155 1 ൅ ܺଵ ൅  ܺଷ ൅ ܺସ ൅ ܺ଻ 
26 ܺଵ ൅  ܺଷ ൅ ܺସ 157 1 ൅  ܺଶ ൅ ܺଷ ൅  ܺସ ൅ ܺ଻ 
28 ܺଶ ൅ ܺଷ ൅  ܺସ 160 ܺହ ൅  ܺ଻ 
30 ܺଵ ൅ ܺଶ ൅ ܺଷ ൅  ܺସ 164 ܺଶ ൅ ܺହ ൅ ܺ଻ 
31 1 ൅  ܺଵ ൅ ܺଶ ൅ ܺଷ ൅  ܺସ 165 1 ൅  ܺଶ ൅ ܺହ ൅ ܺ଻ 
33 1 ൅  ܺହ 166 ܺଵ ൅  ܺଶ ൅ ܺହ ൅ ܺ଻ 
34 ܺଵ ൅ ܺହ 167 1 ൅ ܺଵ ൅  ܺଶ ൅ ܺହ ൅ ܺ଻ 
35 1 ൅  ܺଵ ൅ ܺହ 169 1 ൅  ܺଷ ൅ ܺହ ൅ ܺ଻ 
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39 1 ൅ ܺଵ ൅  ܺଶ ൅ ܺହ 170 ܺଵ ൅  ܺଷ ൅ ܺହ ൅ ܺ଻ 
40 ܺଷ ൅ ܺହ 172 ܺଶ ൅ ܺଷ ൅  ܺହ ൅ ܺ଻ 
42 ܺଵ ൅  ܺଷ ൅ ܺହ 173 1 ൅  ܺଶ ൅ ܺଷ ൅  ܺହ ൅ ܺ଻ 
44 ܺଶ ൅ ܺଷ ൅  ܺହ 178 ܺଵ ൅  ܺସ ൅ ܺହ ൅ ܺ଻ 
48 ܺସ ൅ ܺହ 180 ܺଶ ൅ ܺସ ൅  ܺହ ൅ ܺ଻ 
49 1 ൅ ܺସ ൅ ܺହ 183 1 ൅  ܺଵ ൅ ܺଶ ൅ ܺସ ൅  ܺହ ൅ ܺ଻ 
60 ܺଶ ൅  ܺଷ ൅ ܺସ ൅ ܺହ 184 ܺଷ ൅ ܺସ ൅  ܺହ ൅ ܺ଻ 
62 ܺଵ ൅ ܺଶ ൅  ܺଷ ൅ ܺସ ൅ ܺହ 185 1 ൅  ܺଷ ൅ ܺସ ൅  ܺହ ൅ ܺ଻ 
63 1 ൅  ܺଵ ൅ ܺଶ ൅  ܺଷ ൅ ܺସ ൅ ܺହ 186 ܺଵ ൅ ܺଷ ൅ ܺସ ൅  ܺହ ൅ ܺ଻ 
65 1 ൅  ܺ଺ 190 ܺଵ ൅ ܺଶ ൅  ܺଷ ൅ ܺସ ൅ ܺହ ൅  ܺ଻ 
69 1 ൅ ܺଶ ൅ ܺ଺ 191 1 ൅  ܺଵ ൅ ܺଶ ൅  ܺଷ ൅ ܺସ ൅ ܺହ ൅  ܺ଻ 
70 ܺଵ ൅  ܺଶ ൅ ܺ଺ 192 ܺ଺ ൅  ܺ଻ 
71 1 ൅ ܺଵ ൅  ܺଶ ൅ ܺ଺ 193 1 ൅  ܺ଺ ൅  ܺ଻ 
72 ܺଷ ൅ ܺ଺ 196 ܺଶ ൅ ܺ଺ ൅ ܺ଻ 
73 1 ൅ ܺଷ ൅ ܺ଺ 200 ܺଷ ൅ ܺ଺ ൅ ܺ଻ 
75 1 ൅ ܺଵ ൅  ܺଷ ൅ ܺ଺ 201 1 ൅  ܺଷ ൅ ܺ଺ ൅ ܺ଻ 
76 ܺଶ ൅ ܺଷ ൅  ܺ଺ 206 ܺଵ ൅ ܺଶ ൅ ܺଷ ൅  ܺ଺ ൅ ܺ଻ 
78 ܺଵ ൅ ܺଶ ൅ ܺଷ ൅  ܺ଺ 207 1 ൅  ܺଵ ൅ ܺଶ ൅ ܺଷ ൅  ܺ଺ ൅ ܺ଻ 
79 1 ൅  ܺଵ ൅ ܺଶ ൅ ܺଷ ൅  ܺ଺ 208 ܺସ ൅ ܺ଺ ൅ ܺ଻ 
82 ܺଵ ൅  ܺସ ൅ ܺ଺ 214 ܺଵ ൅ ܺଶ ൅ ܺସ ൅  ܺ଺ ൅ ܺ଻ 
84 ܺଶ ൅ ܺସ ൅  ܺ଺ 215 1 ൅  ܺଵ ൅ ܺଶ ൅ ܺସ ൅  ܺ଺ ൅ ܺ଻ 
86 ܺଵ ൅ ܺଶ ൅ ܺସ ൅  ܺ଺ 218 ܺଵ ൅ ܺଷ ൅ ܺସ ൅  ܺ଺ ൅ ܺ଻ 
87 1 ൅  ܺଵ ൅ ܺଶ ൅ ܺସ ൅  ܺ଺ 220 ܺଶ ൅  ܺଷ ൅ ܺସ ൅ ܺ଺ ൅  ܺ଻ 
88 ܺଷ ൅ ܺସ ൅  ܺ଺ 221 1 ൅  ܺଶ ൅  ܺଷ ൅ ܺସ ൅ ܺ଺ ൅  ܺ଻ 
89 1 ൅  ܺଷ ൅ ܺସ ൅ ܺ଺ 222 ܺଵ ൅ ܺଶ ൅  ܺଷ ൅ ܺସ ൅ ܺ଺ ൅  ܺ଻ 
90 ܺଵ ൅ ܺଷ ൅ ܺସ ൅  ܺ଺ 226 ܺଵ ൅  ܺହ ൅ ܺ଺ ൅ ܺ଻ 
91 1 ൅  ܺଵ ൅ ܺଷ ൅ ܺସ ൅  ܺ଺ 227 1 ൅ ܺଵ ൅  ܺହ ൅ ܺ଺ ൅ ܺ଻ 
95 1 ൅  ܺଵ ൅ ܺଶ ൅  ܺଷ ൅ ܺସ ൅ ܺ଺ 229 1 ൅  ܺଶ ൅ ܺହ ൅  ܺ଺ ൅ ܺ଻ 
100 ܺଶ ൅ ܺହ ൅  ܺ଺ 230 ܺଵ ൅ ܺଶ ൅ ܺହ ൅  ܺ଺ ൅ ܺ଻ 
101 1 ൅  ܺଶ ൅ ܺହ ൅ ܺ଺ 231 1 ൅  ܺଵ ൅ ܺଶ ൅ ܺହ ൅  ܺ଺ ൅ ܺ଻ 
104 ܺଷ ൅ ܺହ ൅  ܺ଺ 233 1 ൅  ܺଷ ൅ ܺହ ൅  ܺ଺ ൅ ܺ଻ 
105 1 ൅  ܺଷ ൅ ܺହ ൅ ܺ଺ 234 ܺଵ ൅ ܺଷ ൅ ܺହ ൅  ܺ଺ ൅ ܺ଻ 
109 1 ൅  ܺଶ ൅ ܺଷ ൅ ܺହ ൅ ܺ଺ 235 1 ൅  ܺଵ ൅ ܺଷ ൅ ܺହ ൅  ܺ଺ ൅ ܺ଻ 
110 ܺଵ ൅ ܺଶ ൅  ܺଷ ൅ ܺହ ൅ ܺ଺ 238 ܺଵ ൅ ܺଶ ൅  ܺଷ ൅ ܺହ ൅ ܺ଺ ൅  ܺ଻ 
112 ܺସ ൅ ܺହ ൅  ܺ଺ 240 ܺସ ൅ ܺହ ൅  ܺ଺ ൅ ܺ଻ 
113 1 ൅  ܺସ ൅ ܺହ ൅ ܺ଺ 241 1 ൅  ܺସ ൅ ܺହ ൅  ܺ଺ ൅ ܺ଻ 
118 ܺଵ ൅ ܺଶ ൅  ܺସ ൅ ܺହ ൅ ܺ଺ 244 ܺଶ ൅  ܺସ ൅ ܺହ ൅ ܺ଺ ൅  ܺ଻ 
119 1 ൅  ܺଵ ൅ ܺଶ ൅  ܺସ ൅ ܺହ ൅ ܺ଺ 245 1 ൅  ܺଶ ൅  ܺସ ൅ ܺହ ൅ ܺ଺ ൅  ܺ଻ 
121 1 ൅  ܺଷ ൅ ܺସ ൅ ܺହ ൅ ܺ଺ 246 ܺଵ ൅ ܺଶ ൅  ܺସ ൅ ܺହ ൅ ܺ଺ ൅  ܺ଻ 
122 ܺଵ ൅ ܺଷ ൅  ܺସ ൅ ܺହ ൅ ܺ଺ 248 ܺଷ ൅  ܺସ ൅ ܺହ ൅ ܺ଺ ൅  ܺ଻ 
123 1 ൅  ܺଵ ൅ ܺଷ ൅  ܺସ ൅ ܺହ ൅ ܺ଺ 251 1 ൅  ܺଵ ൅ ܺଷ ൅  ܺସ ൅ ܺହ ൅ ܺ଺ ൅  ܺ଻ 
126 ܺଵ ൅  ܺଶ ൅ ܺଷ ൅ ܺସ ൅  ܺହ ൅ ܺ଺ 253 1 ൅  ܺଶ ൅ ܺଷ ൅ ܺସ ൅  ܺହ ൅ ܺ଺ ൅ ܺ଻ 
129 1 ൅  ܺ଻ 254 ܺଵ ൅  ܺଶ ൅ ܺଷ ൅ ܺସ ൅  ܺହ ൅ ܺ଺ ൅ ܺ଻ 
132 ܺଶ ൅ ܺ଻ 255 1 ൅ ܺଵ ൅  ܺଶ ൅ ܺଷ ൅ ܺସ ൅  ܺହ ൅ ܺ଺ ൅ ܺ଻ 

We remark that 50% from elements of GF(28) (128 from 256) are primitive and can 
generate the whole field. 

  


